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I. Introduction
_ The purpose of this paper is to develop a scaling hypothesis for the

Hall effect in disordered electron systems. Our arguments are based on the

T T v e,

{
i
!
g scaling theory of electron localization which has recently been developed by

: j Abrahams et al.l’2 The scaling parameter in their theory is the dimensionless
-
g conductance g(L) = G(L)/(e2/#) at length scale L . Here G(L) is the zero
,;}i temperature conductance of a hypercubic sample of size L in d dimensions.
- The conductance at scale bL (b is the scaling factor) is determined by the
Y
H scaling relation1
3 .: g(bL) = £(b;g(L)), (1.1
; § or in continuous terms 3
E
E'”% d 2n g/d %n L = B(g) (1.2) |
‘ ’ . j
| where, for each 4 , B is a universal function of g only.
"y
i ﬂ The scaling theory predicts d =2 as the lower critical dimensionality
f.
‘ ’ in the following sense: The existence of a mobility edge is indicated by a
zero of the B-function. At d = 2, B(g) < 0 for all finite g , and no
ﬂ zero occurs. For d > 2, B(g) has a zero, and the conductivity
- <{ 2-d
. . o(E) = (e2/tn) 1im L*™C g(L;E) (1.3)
- Lo "]
: is finite for Fermi energies E higher than the mobility edge Ec + Near .
: ; (above) E, , we have 1
i o(E) ~ (E-E)° . (1.4)
:
; The conductivity exponent t 1is related to the correlation length exponent
1
b v by
= t = (d-2)v , (1.5) .

F . a result first obtained by Wegner.3
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We want to extend the scaling arguments of Ref. 1 to the Hall effect.
The influence of magnetic field on the localization picture at d = 2 has
been discussed from the microscopic point of view by several aut:horsl.‘—6 The
calculations in these papers are restricted to the weak scattering limit.
Here we shall give a scaling hypothesis which gives the behavior near the
mobility edge. While our arguments are given for temperature T = 0 , we
expect that at finite T the length scale is set by the temperature-depen-

7,8

dent Thouless length °’ = (2 );2 where the ¢'s are the elastic and

et*in
(temperature-dependent) inelastic mean-free paths.

In Section II, we formulate the scaling hypothesis. The hypothesis
is supported to some extent by a microscopic calculation in Section III. 1In
Section IV, we give an explicit calculation in 2 + € dimensions where the

mobility edge is accessible by perturbation theory. The conclusions are

summarized in Section V.

II. The Scaling Hypothesis for the Hall Conductance

The Hall conductance GH is defined in terms of the transverse Hall
voltage U“ » the longitudinal voltage U and the conductance G by

GH - GUH/U . 2.1)

The Hall conductivity is defined as

(E) = lim L G“(L E) . (2.2)
L4

For E < Ec » 1.e. in the insulating region, oy 0 since there can be no

Hall voltage without an ohmic current. When the mobility edge is approached

from above, oH(E) presumably approaches zero according to

tn
o“(E) ~ (E-Ec) (2.3)

which defines the Hall conducitivity exponent t“ .

it
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Let us introduce a dimensionless Hall conductance gyz(L) = GH(L)/(eZ/ﬁ)
! ) and try to undersﬁand how it might scale with the sample size L.

It is instructive to start with the classical transport regime. In

this regime macroscopic transport theory is valid, the parameter g(L) is

Ld-2

much larger than unity and it scales with L as . The Hall field

EH = rBj , where r 1is the Hall constant of the material and j 1is the
d-1

current density. Since UH = EHL and jL = UG , we have
U, = (e2/mreL” 4" gy (2.4)
or, using Eq. (2.1),
gy (L) = (e2meL 42y | (2.5)

In this classical regime g(bL) = bd-zg(L) and thus Eq. (2.5) implies the

TR PO 1&*“‘1.‘..@&4“ A aeacdl ‘9;‘\1_.....1/‘._4.., A

: following scaling relation for gH(L): .i
-(d-2 - =
g, (bL) = (e2/myrBL” 42 372 g2y = i
‘ - -2
{ = o n®? 2w . (2.6)
3 The parameter hcl has the meaning of a conductance Ld-Z/rB , measured in

units (e2/n) . In the classical transport regime both hcl(L) and the
scaling parameter g(L) scale as Ld-z, and so does the Hall conductance

- gy(L).

We now assume that gH(L) possesses scaling behaviour not only in

e

the clagsical limit (i.e. for g + =) but for any value of the scaling para-

meter g(L). With Eq. (1.1) in mind, the generalization of Eq. (2.6) suggests 4

the following scaling relation:

|
I
i

gy(BL) = b (LIF(b3g(L)), 2.7
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s - where h(L) is a (dimensionless) conductance inversely proportional to the
magnetic field B.

According to the universality argument of Ref. 1 the dimensionless z
conductance g(L) scales classically, i.e. as Ld-2 , whenever it is large.

-2
We now assume that the same is true for h(L), i.e. h(L) ~ Ld for h >> 1.

e s LU R

For small enough B the condition h >> 1 will be satisfied whatever the

v

ekl i 1’/4 4

value of g 1s. In fact our assumption is that even when quantum correc-

sp

‘

tions to g(L) become important, h(L) still scales classically if it is

large enough. Fukuyama's microscopic calculation4 in two dimensions gives

some evidence in favor of this assumption as does the 2 + ¢ dimension

; calculation in Section III. Thus, if we require h to be large even at

PP~ MR = I T M KR 5

some typical microscopic scale L0 , we get a rough criterion for a weak

-2
magnetic field. This requirement gives B << th /e?r . (Estimating

T

r = 1/enc = Lg/ec , we have B << hc/eL% . If Lo is of the order of

o ’ interatomic spacing this gives the usual requirement for a'tlassical" magne-

R

tic field in metals.)

© e

If the conjecture about classical scaling of the parameter h(L), for

any value of g(L) , is correct, we have:

A

L~(d-2)

gH(bL) ~ F(bs;g(L)) . (2.8)

It follows from this equation that the Hall conductivity exponent (Eq.(2.3))

ty = 2(d-2)v = 2t . " (2.9)

To derive this result we introduce

A(L) = (g(L) - gc)/sc (2.10)

. s

LR e Pppirer———

. as the basic scaling parameter (rather than g(L) itself as in Ref. 1).

For L of the order of the correlation length { this parameter is of order
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unity.9 For L << &, A(L) << 1 . 1In this case § ~ LA-v(L) and thus,

for A << 1, the parameter A(L) scales as

AL) = AO<L/L0)1"’ (2.11)

where Ao ~ (E-Ec)/Ec is the initial value of the parameter at some scale,
e.g. the microscopic scale Lo .

We consider now a sample of size J: and divide it into blocks of
size L, i,e. b = oC/L . For a large (L > g sample with E above Ec
(i.e. in the metallic region), the Hall conductance GH(AC) must be propor-
tional to ,Cd'z , which via Eq. (2.8) 1implies

gy(dL) - @D w7 s . (2.12)

Yy

Since A « E - Ec , we require, by Eq. (2.3) that for A << 1, ¢(8) ~ A .

Hence using Eq. (2.11) we have
t, t./v

g (L) - 74P myd?a L E (2.13)

Since the block size is arbitrary (the only condition being L << £) , it must
cancel out from Eq. (2.13), which immediately leads to relation (2.9) for the
exponents.10 Clearly, Eq. (1.5) for the conductivity exponent t can also

be derived by a similar argument.

Taking b =1 + & (§+0) , the scaling relation (2.8) (or (2.7)) can be

cast into differential form

d g¢n g, (L)/d ¢n L = v(g(L)) (2.14)
where 7Y(g) 1s a universal function of the scaling parameter g(L). For
g8+ » , 1.e. in the classical transport regime, gH(L) ~ l..d-2 and hence
Yy =d-2. On the other hand, for g+ 0 , i.e. in the strongly localized -

regime, gH(L) , as well as g(L), is exponentially small and y + =« ,
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Thus the qualitative behaviour of the y-function is similar to that of the

B-function.l However, quantitatively these two functions are different as
is shown in the next section. It is this difference which accounts for the
difference 1in the critical behaviour of o(E) and oH(E).

Finally we would like to comment on the following point: In the above
arguments, as well as in the following calculations in Sections III and IV,
we ignore the dependence of the scaling parameter g(L) on the magnetic field
B . This is justified6 only for B << fic/4eL? , where L 1is either the
sample size or the Thouless length, whichever is smaller. In particular, if
T = 0 and the sample size L + «® (it is under these conditions when the
critical exponents can be rigorously defined) any finite field would change
g(L) in an essential way, and thus our results for this case refer strictly
speaking to an infinitesimal B . However, all the arguments of this
section can be repeated without change for a finite B (which satisfies the

criterion B << th-z/

e2r derived above) if we assume that the magnetic field
does not represent a relevant scaling field for the Anderson tramsition

(d>2), 1i.e. we still have a single parameter scaling theory. The fact that

the scaling parameter g(L) becomes dependent on B changes nothing in our
arguments. Thus, if B is not relevant, we expect that the critical exponments

calculated in Section IV for an infinitesimal magnetic field (since the field

dependence of g 1is neglected) will remain unchanged at finite fields.

III. The Weak Scattering Regime

In this section we calculate the leading (i.e. proportional to 1/g)
quantum correction to the classical 1limit (d-2) of the y-function. Thus we
consider the weak scattering regime k& >> 1 , where k is the Fermi wave

number and & is the electron mean-free path.
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For the B8-function this leading correction has been calculated in

e e e e e

Refs. 2,11, This correction is due to the maximally crossed diagrams, which

can be summed explicitly. The sample size L enters the calculation of

T

Ref. 2 via the lower cutoff 1/L in some integrals over the momentum space.

This leads to an L-dependent conductivity o(L) from which one obtains the
conductance as G(L) = Ld-2 o(L). Although the explicit calculation in
Ref. 2 has been done for d = 2 , it is trivially generalized to any dimension,

with the following result:

i d-2 A L . d-2
;E) = — - — [ (—— - .
g(L;E) 2 04 (E)L -2 [G@Ey 1] (3.1)

- - 2 -
Here A = 27 1(21r) d Sq » where §y = 2nd/ {r{d/2)] 1 is the area

s skt st bt

of a d-dimensional sphere of unit radius. The first term in Eq. (3.1)

represents the classical conductance, with

o, = 2(e?/ma”  2m ™ st gl (3.2)

. ,~,:. i - ’ o/
e o rinaghina e ‘.'L-‘.M.étuhﬁ&u“l..‘r.‘_g.m&i" VN i.a._...

The second term in Eq. (3.1) represents the leading quantum correction. It ;
was assumed in the derivation of Eq. (3.1) that the sample size L is bigger 3

than the mean-free path £ . The factors 2 in the expressions for A and

LA

g S
0, account for spin-degeneracy.
: In the limit d + 2 Eq. (3.1) takes the form
g = @/ed)o, - (1/1)t(L/Y) , (3.3)
| and the result of Ref. 2 is recovered.
i. For the perturbative calculation above to be valid the second term
in Eq. (3.1) must be much smaller than the first one, which, with the help

of Eq. (3.2), leads to the following criterion:
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a(LE) = % T Ei—z [1- (%)d‘z] «<1 . (3.4)

In three dimensions the weak scattering condition k& >> 1 itself insures
the fulfillment of criterion (3.4), for any L (bigger than %) . However,
near two dimensions, i.e. for (d-2) << 1 , the condition (3.4) is satisfied,
for any L , only if a more restrictive requirement on kf is imposed,
namely k& >> 1/(d-2). (As we shall see below this corresponds to energies
much higher than the mobility edge.) Otherwise the condition (3.4) can be
satisfied only for not-too-loug samples. 1In particular at two dimensions
the condition (3.4) reduces to 2n(L/%) << k& , and hence for large enough

L the perturbative calculation breaks down, however high is the energy.

In terms of the parameter a Eq. (3.1) can be rewritten as

g(L;E) = ('h/ez)oo(E)Ld-zll—a(L;E)] i (3.5)

The B-function calculated from Eq. (3.1) is
B(g) =d - 2 - A/g (3.6)

Since A 1is a constant, depending only on dimensionality, the perturbation
calculation supports the existence of a universal scaling function B(g).

We now discuss quantum corrections to the Hall conducatnce gH(L) .
The contribution of the maximally crossed diagrams to the Hall conductivity
in two dimensions has been calculated by Fukuyama4 and, using a somewhat
different technique, by Altshuler et al.6 Again the restriction to d = 2
in Refs. 4,6 is not essential and in fact the value of d is introduced only
at the final stage of the calculation. Employing the technique of Ref. 6

we find

d-2 2A [ L.d-2

ga(LiE) = v oty ot - By - -

= wct(ﬁ/ez)coLd-zll—Zu(L;E)] R 3.7
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where w, = eB/mc 1is the cyclotron frequency (m is the electron effective
mass). Thus the quantum correction to the Hall conductance, relative to the
leading classical term, is twice as bilg as the correctiom to the ohmic con-
ductance (Eq. (3.5)). This result which for d = 2 has been derived in

Refs. 4,6, holds for any dimensionality.

Differentiating Eq. (3.7) and using Eq. (3.1) for g, we obtain
d n gH/d fnL=d-2- (20/g)(1-a)/(1-2a) . (3.8)

With the approximation involved in calculation of g and gy (Eqs. (3.5),
(3.7)) it would be inconsistent to keep the small a-terms in Eq. (3.8).
Our approximation enables us to derive only the leading quantum correction

in the y-function:

Y(g) =d - 2 - 2A/g = - (d-2) + 26(g) (3.9)

In order to check if there are indeed no nonuniversal terms of order
0A/g in the y-function one needs to calculate both g and 8y to the
accuracy a2 . The existence of the universal f-function implies that there
is no o2 term (nor higher order terms in a) 1in Eq. (3.5). For d = 2 the
absence of the o2 term has been proven in Ref. 11). On the contrary, if
a universal y-functioca exists, one must expect a term a2 (and no higher
order terms in a ) in the square brackets in Eq. (3.7). This would insure
that Eq. (3.9) holds also to higher order in «a.

Integrating Eq. (3.9) we have

8, (L) = gy(L/L) 4 gy /g1 (3.10)

where 8, and By, are the initial values of g(L) and gH(L) at some

(microscopic) scale Lg. Eq. (3.10) implies that the leading quantum correc-

tion does not spoil the classical, {.e. as d-2 , scaling of the parameter

.




h(L) (Egs. (2.7), (2.8)). This is in agreement with the assumption we

made in Section 2. On this basis, we conclude that the Hall conductance

exponent has the value t, = 2t = 2(d-2)v .

H

k 4, ¢ - Expansion near Two Dimensions

In this section we shall be interested in the critical behaviour of
3** . o(E) and cH(E) near the mobility edge Ec . The only physical dimension
of interest in this problem is d = 3, since at d = 1,2 all the states

are localized and there is no mobility edge at all.l Unfortunately at

B - T R o0 T IR SR A

d = 3 the calculation of the preceding section are not valid near Ec .
since the parameter k& there is of order unity, while the weak scattering
regime requires k& >> 1 . However, at d = 2 + € with € << 1 , one can

establish a connection between the weak scattering regime and the critical

. . 1
JPONY YUC Y PR S

regime. This is possible because Ec > o when ¢ - 0, and thus for 1
small € the parameter kf remains large even at the mobility edge. In
terms of the scaling parameter g this means that for small ¢ , gc is
large, and therefore the necessary weak scattering condition g >> 1 is
) fulfilled at the mobility edge (while for d = 3 , 8. = 1).

k" The calculation is straightforward. The g-function for small ¢ 3

is given by {

B(g) =d ang/d anL =¢ - 1/72g . (4.1)

Small terms of the order ¢/g are omitted in Eq. (4.1). The zero of the
g-function is g. = 1/%%¢ >> 1 . Integrating Eq. (4.1), with g(LO) = go

as an initial condition, we obtain:
€
g(L) =g [1+ AO(L/LO) ] (4.2)

where Ao = (go-gc)/gc . In fact, this equation, with a properly chosen

. SR~ e e e s — - ’ T
b kb it s . ) . ot AR i 3 o Bt v e i o )
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8y » is the same as Eq. (3.1). The difference is that Eq. (4.2) is valid
in a much larger region than the initial Eq. (3.1). Namely, in Eq. (4.2)
there is no restriction on L due to the condition a << 1 (Eq. (3.4)).
This is of course because we are relying on the universal character of the
B-function. Thus the only condition for validity of Eq. (4.2) is g >> 1 .
This means that for Ao 2 0 (i.e. above or at the mobility edge) Eq. (4.2)
is valid for any L . On the contrary, for AO <0, i.e. below the mobility
edge, Eq. (4.2) 1is valid for not-to-large a sample.

The exponents t and Vv are immediately obtained from Eq. (4.2).
For Ao > 0 and in the limit L + o , g(L) is proportional to AOLe .
Since AO ~E - Ec , this means that the conductivity expoment t =1 . It
follows then from the scaling relation (1.5) that the loclization length
exponent V = 1/e . The values for these exponents have been also obtained
by an approach based on a Lagrangean formulation of the localization problem
(see Ref. 12 and references therein).

The Hall conductivity exponent tH is obtained in a similar way.
Eq. (3.9) for the y-function and hence Eq. (3.10) for gy are valid if
g >> 1 . Thus, for € << 1 , Eq. (3.10) is valid for a sample of any size
L all the way down tc the mobility edge. Substituting expres.ion (4.2) for

g(L) into Eq. (3.10) we obtain
gy (L) = (8,,/85) (L/L)™F g2[1 + 8, (LL1* . (4.3)

For fixed Ly » the initial parameters g and 840 depend on energy , i.e.
on Ao . Since we are interested in the region near the mobility edge
(A0 << 1) , we can take in Eq. (4.3) the values of these parameters at the

mobility edge. It follows from Eq. (4.3) that in the limit L *> <, gH(L)

is proportional to A%Le , and thus the exponent tH = 2 . This result

BB T i R S S YR
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J E confirms the scaling relation (2.9) between the exponents. .
' In addition to the difference in the critical behaviour of o(E) é
and OH(E) (in an infinite sample), there are some essential differences in é
i the behaviour of g(L;E) and gH(L;E) as functions of sample size L , for q
: fixed Fermi energy E: i) At E = Ec the conductance g(L) = 8. and it is
1_ ij independent of L . In contrast, the Hall conductance gH(L) at the |
~
: \ﬂ mobility edge does depend on L as Lt . ii) If the energy is fixed
‘E slightly above Ec (i.e. AO << 1), the conductance g(L) is a monotonically &
E ? increasing function of L . However, the Hall conductance gH(L) first ﬂ
: decreases with L and reaches a minimum at a scale equal to the correlation k
., E
E length §& = LOA—I/€ . Only for L > £ does gH(L) increase monotonically ;
3 ; with L .
? ? These differences between g (or o) and 8y (or OH) arise from the 4
,: ? quantitative difference between the scaling functions B8(g) and y(g) , and
i in particular from the fact that these functions have zeros at different 1
{ values of g . For small € , the zeros of B8 and Yy functions are at
i- 1/72¢ and 2/n%¢ respectively. Note that it is only the zero of the ;
‘; B-function which is associated with a critical point (the fixed point 8.
of the recursion formula (1.2)). The zero of y-function has no such meaning,
&

since the scaling behaviour of By is driven by g .
Finally, at finite T and near the mobility edge the relevant

length scale for the conductivity is set by the temperature-dependent Thouless

=T

lengt}z’8 LT rather than by the correlation length £ (see Ref. 9). Then the

conductivity o(T) and the Hall conductivity cH(T) are expected to be

proportional to L. and L;“e respectively (compared to o(E) ~ £ ¢ and

T
o (E) - £72¢ 4t T =0).

I
&
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5. Conclusion

We have developed a scaling hypothesis for the Hall effect in dis-
ordered systems. It is suggested that a universal scaling function for the
Hall conductance exists, and the leading quantum correction (~ 1l/g)
to the classical value (d-2) of this function is calculated.

It follows from our theory that the critical exponent tH for the
Hall conductivity is twice the conductivity exponent t. Since the Hall
coefficient r 1is proportional to cH/o2 , we conclude that r(E) approaches
a constant value when the mobility edge is approached from above. On the
other hand, the Hall mobility By = cro approaches zero as (E-EC)t .

The behaviour of the Hall coefficient is in agreement with the accepted

13,14

view that in a degenerate electron gas the "classical" expression

1/enc for the Hall coefficient (n is the electron concentration) remain
approximately valid even in the regime kf ~ 1 . The agreement with the
picture of Refs. 13,14 of course fails when it comes to the Hall mobility
near Ec , since the minimum metallic conductivity assumed in Refs. 13,14

does not occur in the scaling theory.
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